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An implicit finite-difference technique employing orthogonal curvilinear co-ordinates 
is used to solve the Navier-Stokes equations for peristaltic flows in which both the 
wall-wave curvature and the Reynolds number are finite ( 0  2).  The numerical solutions 
agree closely with experimental flow visualizations. The kinematic characteristics of 
both extensible and inextensible walls ( 9  3) are found to have a distinct influence on 
the flow processes only near the wall. Without vorticity, peristaltic flow observed from 
a reference frame moving with the wave will be equivalent to steady potential flow 
through a stationary wavy channel of similar geometry ( 9  4). Solutions for steady 
viscous flow ( 9  5) are obtained from simulation of unsteady flow processes beginning 
from an initial condition of potential peristaltic flow. For nonlinear flows due to a single 
peristaltic wave of dilatation, the highest stresses and energy exchange rates ( 5  6) occur 
along the wall and in two instantaneous stagnation regions in the bolus core. A series 
of computations for periodic wave trains reveals that increasing the Reynolds number 
from 2.3 to 251 yields a modest augmentation in the ratio of flow rate to Reynolds 
number but induces a much greater increase in the shear stress ( 9  7.1). The transport 
effectiveness is markedly reduced for pumping against a mild adverse pressure drop 
(87.2) .  Increasing the wave amplitude will lead to the development of travelling 
vortices within the core region of the peristaltic flow ( 4  7.3).  

1. Introduction 
Periodic and sporadic pumping of fluids or fluid-solid mixtures through muscular 

tubes by means of peristaltic waves is a widely employed biological transport 
mechanism. Examples include the passage of urine from kidneys to bladder, the 
movement of chyme in the gastro-intestinal tract, and the ejection of semen from 
male reproductive organs. Many of the essential fluid-mechanical characteristics 
of peristalsis have been elucidated by engineering analyses. These studies, 
which are reviewed by Jaffrin & Shapiro (1971), have focused almost exclusively 
upon cases for which the ratio of wave amplitude to wavelength is zero or very 
small (implying negligible wall curvature) and/or for which inertial effects are 
insignificant. 

When the complex interaction of the moving wall with the flow field leads to highly 
curvilinear fluid motion a t  finite Reynolds numbers, it becomes necessary to undertake 
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nonlinear analysis. The first study of peristaltic flow which included small nonlinear 
effects was performed by Fung & Yih ( 1  968) for a two-dimensional channel with finite 
amplitude-to-wavelength ratio. Their analysis, which was based upon perturbations 
of the ratio of wave amplitude to mean channel width, yielded a simplified solution for 
the case of free pumping (i.e. no flow if the wall motion stops). A similar analysis was 
reported by Pin & Fung (1971) for an axisymmetric case along with experimental 
verification of analytical results for one-wall peristalsis in a two-dimensional channel. 
Further extension was provided in a paper by Mittra & Prasad (1973), which included 
the effects of thin elastic or viscoelastic channel walls and a uniform pressure 
gradient. 

The early linear solution of Shapiro, Jaffrin & Weinberg (1969) was modified by 
Jaffrin (1973), who performed perturbation analyses to examine both the effect of 
long but finite wavelengths at zero Reynolds number and the effect of small but finite 
Reynolds numbers a t  infinite wavelength. Comparison with Eckstein’s ( 1970) 
experimental data showed reasonable agreement of the pressure/flow relationships 
within the range of validity of the perturbation analyses. Tong & Vawter (1972) 
employed a finite-element method to study peristaltic flow. Their creeping-flow 
formulation was applicable to axisymmetric peristaltic flow with arbitrary wave 
geometry. 

The authors have been engaged in studies of nonlinear peristaltic flows from both 
experimental and computational viewpoints. In  a previous paper (Hung & Brown 
1976), a technique for the generation and visualization of two-dimensional peristaltic 
flows was presented. Several phenomena encountered in linear peristaltic flows (such 
as trapping and retrograde flow) were demonstrated to occur in the nonlinear regime 
as well. It was further shown that solid particles can be effectively transported by 
peristalsis. The effects of wave amplitude, the ratio of particle size to channel width, 
the Reynolds number, the gravitational force and asymmetry on the particle transport 
were studied. In  the present paper, the results of computational simulations of non- 
linear peristaltic flows will be discussed. Close agreement is observed in all cases 
between experimental flow visualizations and the numerical results. 

The effects of variations in Reynolds number over three orders of magnitude are 
studied in one series of computations, while the effects of extreme wall curvature (i.e. 
large wave amplitude) are treated in another. Of particular interest is the stress field 
resulting from the wall motion, since peristaltic roller pumps operating in the non- 
linear regime are commonly employed in surgical heart-lung bypass procedures. 
Jaffrin & Meginniss (1971), who adapted the creeping-flow solution of Shapiro et al. 
(1969) to the geometry of a roller pump, have shown that shear stresses in excess of 
those known to induce damage to red blood cells can be developed in the neck sections 
of highly occluded roller pumps. Evidence has since accumulated that serious damage 
to platelets (the blood elements responsible for the clotting mechanism) occurs at much 
lower stress levels (Brown et al. 1975; Hung et al. 1976). Detailed characteristics of the 
stress field and of the patterns of mechanical energy transfer and balance are discussed 
in this paper for a train of waves of contraction and dilatation. It is found that the 
shear stress developed along the peristaltic wall increases dramatically with Reynolds 
number. Flow and stress field results for single nonlinear waves of contraction will be 
the subject of a subsequent paper. 
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2. Computational and experimental method 
The numerical procedure is based upon an implicit finite-difference solution of the 

governing Navier-Stokes and continuity equations, which in orthogonal curvilinear 
co-ordinates (a, p)  take the respective forms 

au U a U  V a U  U V  ah, V 2  ah i ap -+--+--+ ----- 2 =--- 
aT h, aa h, ap h,h, ap h,h, aa h, aa 

and 

av uav vav uv ah, u2 ah, i ap -+--+--+ 
aT h, aa h, ap h,h, aa h,h, ap h, ap 

(3) 

I n  these equations, U and V denote the dimensionless velocity components in the a 
and p (tangential and normal) directions, P denotes the dimensionless pressure, T the 
time, hl and h, the metrical coefficients, and 9 the Reynolds number pcA/p ( A  being 
the wave amplitude, p the density and p tlhe dynamic viscosity; see figure la). The 
reference quantities by which the dimensionless variables ( U ,  V ) ,  P and T must be 
multiplied to obtain their dimensional equivalents are, respectively, c ,  pc2 and Alc. 
Also, the equations of motion are based on a moving co-ordinate system translating 
longitudinally a t  a constant speed c. 

For peristaltic flow due to the propagation of a wall wave form y = g(x) ,  the flow 
region is time invariant in a co-ordinate system (x*, y*) which translates a t  a velocity 
equal to the wave speed. One can generate an orthogonal curvilinear co-ordinate 
system which is boundary fitted to the moving-frame peristaltic wall (y* = g(x*)) by 
solving the inverse Laplace equations 

a2x*/aa2 + a z X * / a p 2  = o (4) 

and a2y*/aa2 + a2y*/ap2 = 0. 15) 

The boundary conditions along the wall for the value of p and the normal derivative 

(6) 
of a are 

PIwall = constant 

and [aa/aniWall = 0. (7) 
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j =  1 ,  

x=o -A- x = I  
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u = u .  u = u h  

FIGURE 1.  (a) Definition sketch of the physical region R. 
(b) Mesh structure in the transformed space R'. 

U 

Boundary conditions for a and p at the channel inlet and outlet are selected according 
to the physical flow characteristics. For a repetitive peristaltic wave train, aapy 
vanishes a t  the periodic ends although the difference in a (i.e. aa-ab, referring to 
figure 1 )  is not known. However, a, - ab is uniquely determined from the difference in 
,13 between the centre-line and the wall. A new dual iterative procedure has been 
developed to solve (4)-(7) and find aa-ab (Hung & Brown 1977). When aa/ay is non- 
zero at sections a and b,  the mesh can be generated by the much simpler method of 
Thom & Apelt (1961, p. 44). Figure 2 shows the Laplace solution for a and p used for 
the present mesh structure. A detailed description of the numerical method has been 
reported elsewhere (Hung & Brown 1977; Brown 1976). Since the wall boundary 
conditions (free-slip and impermeability) (6) and ( 7 )  can apply equally to a travelling 
wave of geometry ywall = g(xwall - c t ) ,  it  will be observed that an identical flow pattern 
exists for a potential peristaltic flow viewed in the moving (steady) reference frame. 
Clearly, however, the assumption of a free-slip boundary condition remains contra- 
dictory to physical reality. 

As will be discussed in 5 3, potential peristaltic flow is of interest as an idealized 
limiting case of high Reynolds number (9) peristalsis. A vanishingly thin wall 
boundary layer is to be expected physically for extremely large values of 9. The 
potential-flow solution calculated in this study provides also an admissible initial 
condition from which to simulate the viscous flow development using (1)-(3)) in 
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n b  
end) 

8=8,x,s 
FIGURE 2. Potential-flow net and orthogonal curvilinear co-ordinate system 

for a single peristaltic bolus. 

which the (a ,  /I) co-ordinates become rectilinear. Three pairs of metrical coefficients, 
(C, D ) ,  (3, P) and(H, G), corresponding to the respective points of evaluation of (hl, h,) 
were evaluated and stored in the computer memory. Following the method of Hung 
( 1970), we define values of the flow variables U ,  V and P for a given mesh cell as indi- 
cated in figure 1 ( b ) .  

From momentum balances at T = (n + 4) 6T (i.e. forward in time one-half of the 
discretized time step), one obtains the velocity components a t  the next time step from 
finite-difference equations of the form 

I n  this equation, the subscripts designate the spatial mesh indices, while the super- 
scripts refer to the time index. To facilitate the computer coding, U& is taken to  be 
one-half mesh length upstream from pi, j, and K, is taken to be one-half mesh length 
laterally from Pi, (refer to figure 1 6 ) .  The symbol ti, denotes a collection of convective 
and diffusive terms, as well as part of the local acceleration term. 

The pressure a t  the cell centre is obtained from a mass balance: 

I n  this equation, the 5's and y's are geometrical factors involving only combinations 
of the metrical coefficients; Ai, denotes a lengthy collection of terms involving 5 and 
its P-direction counterpart. The first velocity approximation of this method corres- 
ponds to that obtained by the marker-and-cell (MAC) method (Harlow & Welch 
1965). 

While the boundary condition along the peristaltic wall is uniquely determined from 
no-slip considerations, the upstream and downstream boundary conditions may be 
specified in terms of either velocity or pressure distributions. I f  the pressure drop 
Pb - Pa between the leading and trailing sections b and a is chosen to  be the independent 
variable, it becomes convenient to characterize the flow in terms of the Khrmhn 
number 

This transformation is accomplished by setting 

U' = U 9 ,  V' = V 9 ,  P' = P9' = ppA2/p2.  (1 1 a-c) 
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When (11) is introduced into (1)-(3), the Reynolds number no longer appears 
explicitly, as the velocity is expressed in the form of a Reynolds number (Hung 1970). 
After dropping the primes on these variables (i.e. U = U'  etc.), the new dimensionless 
form of the Navier-Stokes equations (1)-(3) remains unchanged except that the factor 
119 is replaced by 1. 

For a wall whose elements move transversely in the fixed co-ordinates (i.e. in the 
y direction) but not longitudinally (i.e. in the x direction), the boundary conditions in 
the moving co-ordinates (i.e. the tangential and normal velocity components at  the 
wall) become 

A perturbation will be added to the above expression for U when the wall is inextensible. 
Taylor's (1951) method can be used if the peristalsis is a continuous train of waves. 

Starting with the velocity and pressure fields of potential peristaltic flow, simulation 
of the transition to steady viscous flow is begun by assuming that the initially inviscid 
fluid suddenly acquires finite viscosity or equivalently that the boundary-layer effect 
is included as time advances. Under the corresponding instantaneous initial change in 
the wall boundary conditions (from free slip to no slip) and in the inlet and outlet 
boundary conditions (from a driving net potential difference to a driving pressure 
difference or K&rm&n number), an implicit iterative procedure is used to obtain 
solutions of (1)-(3) at successive time steps until an asymptotically steady viscous 
flow condition is attained. Unlike the famous MAC technique (Harlow & Welch 1965; 
Welch et al. 1966), the nonlinear effects are simulated here by performing several 
iterations of the velocity field a t  each t,ime increment, until a relative velocity con- 
vergence criterion is satisfied. The pressure field at (n + +) 6T is recalculated after each 
intermediate velocity iteration, on the basis of a temporally interpolated velocity 
field. Details of the iterative procedure and considerations relevant to the selection of 
convergence criteria are reported in Hung & Brown (1977) and in Brown (1976). 

Low Reynolds number peristaltic flows were produced experimentally between two 
flexible acetate walls suspended vertically in a glycerine-filled towing tank, Two pairs 
of horizontal wavy channel-section rails, affixed to the towing-tank carriage, were 
made to mesh with rollers mounted on the ends of vertical Plexiglas ribs, which in turn 
were attached periodically to each acetate wall. As the rails were towed horizontally 
by the carriage, the rollers, and therefore the ribs, together with the tethered flexible 
walls, were constrained to move horizontally so as to follow the shape of the moving 
rails, thus generating peristaltic waves. Flow visualization was facilitated by fine air 
bubbles which were generated when the glycerine was pumped from storage drums 
into the towing tank. The construction and operation of the experimental apparatus 
were fully discussed in a previous paper (Hung & Brown 1976). 

3. Kinematics of the wall and boundary conditions 
We consider first the flow due to a single peristaltic wave of dilation propagating 

along the walls of an otherwise uniform channel. Although Tong & Vawter (1972) 
reported a finite-element creeping-flow solution with large A/h for a periodic train of 
sinusoidal expansion waves separated by straight-wall segments, the case of a solitary 
peristaltic bolus has not been studied. 
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i d  + i A [ l +  sin (2nx*/h - in)] for 0 < x* < A, (13a)  

(13b) 

Let the single wall wave be prescribed by 

{ ad for x* < 0 ,  x* > A, 
y = y * =  

where d is the distance between the undisturbed parallel walls. 
Boundary conditions a t  the wall are not uniquely determined by this wave geometry; 

in addition, the deformation characteristics of the wall itself must be specified in order 
to evaluate the tangential motion of the wall elements. The wall velocity boundary 
conditions [equations (12)]  can be readily obtained by differentiating (13)  with respect 
to time when the wall elements are constrained to  move only transversely. If instead 
the wall is taken to be inextensible, longitudinal as well as lateral wall-element 
motion ensues. 

For a solitary peristaltic wave, the tangential velocity of a given wall element is not 
constant in the moving reference frame when the wall is tethered behind the trailing 
edge. Hence the analysis of Taylor is inapplicable, and instead it becomes necessary to 
calculate the wall-element velocities in the fixed reference frame. The arc length Si 
along the wall from the point of tethering (upstream of the trailing edge) to any given 
point (xi, y i )  on the wavy wall is constant, and can be written as 

kSi = so': [I + (dy*/dx*)2]3 ax* + ct, 

where ct is the distance the wave has travelled in the time t ( =  n S t )  since the trailing 
edge and the reference (tethering) point were coincident. Setting 

one obtains 

2nx* n 2n n 
h 2 h  2 

e = = -(x-cq--,  

Numerical integration of (16)  is necessary to determine the velocity components, which 

u* 1 dl3 in terms of 0 become 
- 

c 2n d(ct/h) 

and 
v* A 

respectively. Because of the inextensibility of the flexible wall, ' 1 ~  and v are seen to be 
linearly related to c, and the velocity distributions u*/c and v*/c in the moving frame 
depend solely on the wave form of the peristalsis. 

The quantity dB/d(ct/h) can be calculated as follows. For a given wall element', Xi is 
constant, and a t  a prescribed time n&(ct/h) the upper limit 0; (where the superscript n 
indicates the time increment number) can be calculated from (16)  by an iterative 
procedure. When the time is increased to (n + 1 )  S(ct/h),  another value of the upper 
limit, O:+', is calculated for the same X i .  Thus, if S(ct/h) is small, one can obtain the 
longitudinal velocity component from 

u* 1 (O.t'+'-Ol') 
c 2n S(ct/h) . 
- - _ -  
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FIGURE 3. Fixed-frame longitudinal (upper) and lateral (lower) velocity profiles for peristaltic 
potential flow; d / A  = 0.203, A/A = 0.164, $b - Qrr = 8.00. 

Distributions of the fixed-frame velocity components u/c and v/c along the wall 
obtained in this manner were shown in Hung & Brown (1976) without the detailed 
numerical procedure. The results reveal that for a single bolus the longitudinal wall 
velocity component is everywhere positive, and that the distributions of the velocity 
components are such that wall elements execute a trajectory of shape -. For the 
periodic case (Taylor 1951; Negrin, Shack & Lardner 1974)) the loopis seento close to a 
figure-of-eight because of spatially alternating positive and negative longitudinal 
velocity components. That is to say, for a train of peristaltic waves each wall element 
periodically retraces its trajectory in the fixed reference frame, while for an 
isolated peristaltic wave the elements of a tethered inextensible wall experience a 
single net longitudinal migration. 

4. Potential flows 
For peristaltic flow between inextensible walls with A/h  = 0.164 and d / h  = 0.208, 

a potential-flow solution, resembling physically an impulsively accelerated flow, was 
first obtained as an initial condition for the simulation of viscous flow. Based upon a 
free-slip boundary condition a t  the wall and a symmetry line at  the bolus axis, the 
velocity field was solved iteratively for the potential function using Dirichlet inlet 
and outlet boundary conditions. A driving difference in potential #b - between the 
two end sections was selected such that in the fixed frame the resultant potential-flow 
field roughly resembled the experimentally observed viscous flow field. As a and p 
correspond to the potential and stream functions for an irrotational flow through a 
stationary wave channel, the aforementioned peristaltic potential flow can be simply 
obtained by superimposing a uniform backward velocity on the appropriately scaled 
velocity field for V2a.  

Figure 3 shows profiles of the longitudinal and lateral components (u and v) of 
velocity in the fixed Cartesian co-ordinates for the potential peristaltic flow. These two 
components will be used for plotting velocity profiles throughout this paper. Two 
stagnation points are shown along the axis near the leading and trailing ends of the 
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( h )  

FIGURE 4. Pressure profiles for A / h  = 0.164, d/h = 0.208. (a) Potential flow with 
#* - #a = 8.00. ( b )  Viscous flow at 9 = 2.36, .X = 0. 

bolus, separating the cantral region of forward flow from two retrograde flow regions. 
The longitudinal velocity profiles are relatively uniform a t  each channel section, as is 
the case in an analysis for the limit of large speed for small wave-amplitude ratios 
(Hanin 1968). Near the wall, the magnitude of the longitudinal velocity of the potential 
flow is seen to increase slightly, except a t  sections near the stagnation points S, and S,. 
The lateral velocity component becomes significant a t  those sections where the wall 
is dilating or contracting rapidly. A region of slightly elevated pressure is found on the 
wall a t  the point of maximum channel width (i.e. a t  x* = $A),  along with two regions 
of slightly lowered pressure near the leading and trailing edges of the bolus (see 
figure 4a). Since in the fixed reference frame the flow is unsteady, regions of high 
pressure do not necessarily coincide with the axial stagnation points. The geometrical 
symmetry (about the line x* = $A) results in equality of pressure a t  the inlet and the 
outlet for this idealized potential case. 

5. Viscous flows 
Keeping zero pressure drop, the viscous flow development shows a continuous 

alteration of the flow rate until the flow approaches the steady state. The transient 
discharge and the relative error e$ in the numerically integrated discharge past con- 
secutive stations, or equivalently in the stream function along the wall, are plotted in 
figure 5 for an inextensible wall as well as for an elastic wall. (The former has finite u on 
the wall while the latter does not.) Because of the prescribed value of q5b - the 
temporal-mean discharge of the potential flow a t  a section in the fixed frame was 
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FIGURE 5. Effect of wall inextensibility on viscous discharge. A / h  = 0.164, 
d / h  = 0 . 2 0 8 , B  = 2.36, T = 0, ST = 0.005, $ b -  = 8.00. 

slightly positive. As the viscous effects developed, the moving-frame discharge became 
increasingly more negative, indicating that the effect of viscosity was to slow down the 
net forward flow in the fixed frame. Should the flow rate of the initial potential flow be 
smaller than that of the steady viscous case, the effect of viscosity would be to increase 
the net forward flow rate. The discharge for the inextensible wall boundary condition is 
about 2 yo larger than that for the elastic wall boundary condition, a finding which is 
attributed to  the Couette effect of the small forward longitudinal wall velocity in the 
former case. 

At T = 1-00 ( = 200 ST), the time rate of change of the average wall stream function 
had decreased to 1-17 yo of its initial value; a t  this time, the flow was considered to have 
reached a steady state. Contours of the moving-frame stream function and of the 
pressure are shown in figure 6. Near the leading and trailing ends of the bolus, the 
backward velocity in the moving frame increases from the wall to the axis, while a t  
the midsection of the bolus (x* = +A) it decreases from the wall to the core. These trends 
are the opposite of those observed for the potential-flow case. 
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I .oooo 

FIGURE 6. Moving-frame streamlines (upper) and pressure contours (lower) for asymptotically 
steady viscous flow. Alh = 0.164, d l h  = 0.208, W = 2.36, X = 0,  $ w  = - 2.747. Values shown for 
isobars are normalized to a reference pressure Pref = 551.5 prescribed on both ends. 

1' - 

FIGURE 7.  Fixed-frame longitudinal (upper) and lateral (lower) velocity profiles for Alh = 0.164, 
dlh = 0.208, d = 2.36, ,T = 0. Inextensible wall boundary condition. 

Profiles of the longitudinal and lateral components of velocity viewed from the fixed 
reference frame are presented in figure 7. Compared with the potential-flow solution 
(refer to figure 3) ,  the two axial stagnation points S, and S, have moved closer together 
for the viscous case, indicating that the region of forward flow has become somewhat 
smaller. The longitudinal velocity profiles are now found to be roughly parabolic, 
except near the wall, where they are influenced noticeably by the small forward 
longitudinal wall velocity component associated with the inextensible wall condition. 
Along the axis a t  the midsection (x* = 3h) the longitudinal velocity is nearly 75 yo as 
great as the wave speed. Should the wave speed be exceeded (as is the case for the large 
amplitude wave discussed below), two secondary trapping vortices will be observed 
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in the moving reference frame. The lateral velocity component is dominated by the 
outward fluid movement in the leading (dilating) half of the bolus and by the inward 
fluid movement in the trailing (constricting) half. It can be seen that along much of the 
wavelength, and especially near the midsection, the lateral velocity of the fluid a t  
the wall is somewhat greater for the viscous flow than for the potential one. While the 
condition of zero normal flux at the wall is the same for both cases, the tangential 
boundary conditions differ. A large forward tangential velocity is observed along the 
dilated portion of the wall for the potential flow, while for the viscous no-slip boundary 
condition this velocity component is zero. Because the tangential velocity of the 
potential flow has a lateral component that is in the opposite direction to the lateral 
wall motion, the net lateral velocity for potential flow is somewhat smaller than that 
for the viscous case. 

A comparison between the numerical solution and the experimentally observed flow 
provides direct evidence of the validity of the computation. As can be seen from the 
fixed-frame velocity field composite of figure 8 (plate l), the agreement between 
computation and experiment is excellent. I n  the upper half of this figure, the calculated 
velocity is plotted vectorially a t  each mesh node; in the lower half, the velocity is 
represented by light streaks which are time-lapse path lines of fine air bubbles 
suspended in the fluid (Hung & Brown 1976). The velocity vector (V) plot scaling 
factor and the camera exposure time t, were chosen such that a given bubble-trace 
path length can be expressed as JVI t, if the path-line curvature and the transient flow 
characteristics in the fixed frame are neglected. Because of the inextensibility of the 
acetate wall, the bubble traces are seen to have a small forward longitudinal com- 
ponent along both the contracting and the dilating portion of the wall. The spacing 
between the two axial stagnation points, an instantaneous landmark of the flow, is 
accurately predicted by the computation. Note that the fluid is not actually stagnant 
along the wall a t  the leading and trailing edges of the peristaltic wave since its angular 
velocity there is non-zero. 

Temporal integration of this velocity field reveals that fluid elements moving along 
the bolus centre-line undergo both forward and retrograde motion. As shown in 
figure 9, a fluid particle initially (ct/A = 0) positioned a t  the midpoint of a downstream 
section is first pulled backwards as the wave approaches, passing the leading edge 
of the wave (trajectory shown by the broken line) a t  point B. Shortly thereafter 
(ct /A = 0.14), the fluid comes to rest, and then moves forwards until ct/A = 1.70. The 
trailing edge of the wave passes the fluid element a t  point C, a t  which time the fluid 
element is again found to be moving backwards. This pattern of fluid motion is very 
similar to that observed experimentally for large solid particles transported along the 
symmetry axis of a peristaltic flow (Hung & Brown 1976). 

The pressure field calculated for asymptotically steady viscous flow displays 
longitudinal asymmetry, as is shown by the contour plot in the lower half of figure 6.  
The values indicated for the isobars are normalized to a reference pressure point 
located a t  z* = y* = 0, i.e. along the axis at the trailing edge of the bolus ( P  = 1-00). 
During the pressure iteration [equation (9)], P a t  this reference point was kept fixed 
so as to prevent overall drifting of the pressure field in the computational simulation. 
The point of maximum pressure is found to occur at the wall about midway between 
the longitudinal symmetry plane of the wall wave (x* = +A) and the trailing edge. This 
high pressure region coincides with the location of maximum contractile velocity of the 
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FIGURE 9. Trajectory of fluid elements along bolus centre-line for A / h  = 0.164, 
d / h  = 0.209, d = 2.36, 3? = 0. 

wall. The area of minimum pressure is also located a t  the wall, but is somewhat nearer 
t o  the leading edge than to the point of maximum wall dilatational velocity. The 
pressure field is also plotted in profile form in the lower half of figure 4 to facilitate 
comparison with t,he initial, potential-flow pressure profiles. It can be seen that the 
pressure field for the viscous solution exhibits greater variation both longitudinally 
and laterally than is the case for the potential flow. 

For a two-dimensional flow, the components of the deviatoric stress tensor in 
orthogonal curvilinear co-ordinates become 

and 

g,=- -+-- +(au h, a& h, 2, ahli ap 7 

(2Oc) 

The normal viscous stress up in the p direction and the shearing stress T are plotted in 
contour form in figure 10. As a consequence of the equation of continuity, the normal 
viscous stresses a t  a point identically sum to zero. The numerical values of (T, in the 

:fl 
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( h )  

FIGURE 10. (a)  Contours of the P-direction normal viscous stress for the flow in figure 8. 
( 6 )  Contours of the shearing stress. 

present calculation are found to be very nearly (average relative error = 0-35 yo) equal 
to - gP. Both of the normal viscous stresses are roughly symmetrical about the bolus 
midsection (z* = $A),  their magnitudes reaching their maximum values in the stagna- 
tion regions along the axis. The magnitude of the spatial variation of the normal 
viscous stress in this peristaltic flow field is nearly 43 yo of the variation observed for 
the pressure. The shearing stress peaks along the wall, and is somewhat stronger in the 
dilating segment than in the contracting one. 

6. Energy transfer characteristics 

steady incompressible flow in the absence of body forces can be written as 
The equation of mechanical energy conservation a t  a point in the flow field for 

(v.$pv~v)+(v.pv)+[v.(T.v)]-(T:vv) = 0. (21) 

In  this equation, the four terms on the left-hand side denote, respectively, the rate of 
convection of kinetic energy, the rate of work done by pressure, the rate of work done 
by viscous stresses and the rate of energy dissipation. 

To evaluate the various terms in the work/energy relationship, the velocity and 
pressure in the moving reference frame rather than in the fixed reference frame are 
employed. Contour plots of the rates of work and of energy convection and dissipation 
are shown in figure 11.  As is to  be expected from the small variation in velocity and 
pressure in the core region of the bolus, relatively little energy interchange takes place 
there. Areas of complex interaction are identified, however, along the centre-line near 
the fixed-reference-frame stagnation points 8, and S, (refer to figure 8), as well as 
along much of the wall. Near the leading stagnation point S,, the inward convection of 
kinetic energy from the right and left, due to the longitudinal velocity gradients, 
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FIGURE 11. (a) Rate of working of the a-direction normal viscous stress. ( b )  Rate of working of the 
P-direction normal viscous stress. (c) Rate of working of the shear stress. ( d )  Rate of working of the 
pressure. ( e )  Local rate of energy dissipation. ( f )  Local rate of convection of kinetic energy. 
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exceeds the outward convection towards the wall associated with wall dilatation and 
the lateral velocity gradient. This net rate of kinetic energy influx is balanced primarily 
by the rate of viscous dissipation and by the rate of work done against the a-direction 
normal viscous stress. Near the trailing stagnation point S,, the rates of viscous 
dissipation and of work done against ua are essentially the same as those near the 
leading stagnation point. Altjhough the magnitudes of the kinetic energy convection 
rates are also roughly equal, the positive values around S, indicate a net efflux of 
kinetic energy, as opposed to the net influx around S,. Unlike the dilating segment a t  
A’,, however, the principal rate of energy input near S, in the contracting region is 
provided by the work done by the pressure. Note that the rate of work by ub, although 
maximal in the stagnation regions, is relatively insignificant because of the small 
lateral variation of the velocity component in the /3 direction. The rate a t  which work 
is done by the normal viscous stress component CF, in the a direction is 

In  the moving co-ordinates, the second term in the parentheses vanishes a t  the wall, 
where v = 0. For the case of an inextensible wall, au/aa is also zero on the wall, resulting 
in the zero cont’ribution of urn to energy transfer there. A finite value of au/aa may 
occur along an extensible wall. 

It can be seen that near the wall region the primary exchange of energy is between 
work done by pressure and that done by shear stress. An area of particularly intense 
activity is observed a t  the trailing edge of the curved wall segment, where pressure 
work associated with active wall contraction supplies energy to the shear field. An 
area of somewhat less intense exchange is found to be centred near the point of most 
rapid wall dilatation; here the energy derived from work done by the shear field is 
expended primarily as pressure work. Should the wall dilation a t  the leading edge be 
passive (i.e. pushed by the fluid) rather than actively imposed, one would expect the 
patterns of local energy interconversion and dissipation to be altered, since energy 
would be expended in mechanical deformation of the wall and in work done by pressure 
;tgainst the exterior of the channel. 

The numerical accuracy of the energy balance, as reflected in the local residue of the 
sum of the six component terms, was judged to be satisfactory. The average relative 
local residue was about 2 %, concentrated primarily in regions with high gradients of 
shear stress and pressure (Brown 1976). 

The spatial exchange of energy within the bolus can be further appreciated from the 
profile plots of the local energy dissipation rate and the local Bernoulli sum shown in 
figure 12. The combination of the free pumping and periodic end boundary conditions 
for this flow requires that the Bernoulli sum a t  the leading-edge section (section 1 I )  
equals that a t  the trailing-edge section (section 1)  in the moving reference frame. That 
is to say, the walls supply energy to the flow field a t  a rate equal to the total rate of 
viscous energy dissipation. When the peristaltic wave propagates from left to right, 
the Bernoulli sum in the moving frame first decreases (sections Il-g), then increases 
(sections 9-4) (in spite of energy dissipation throughout this region) and finally 
decreases again back to the value a t  section 11 because of free pumping. Much of this 
energy is apparently derived from the active dilatation of the leading half of the 
wall. 
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FIGKRE 12. Profiles of (a) the rate of viscous energy dissipation and 
(b )  the variation of the Rernoiilli sum for the flow in figure 8. 

7. Interaction of fluid inertia and wall curvature effects 
To explore the individual and combined effects of fluid inertia and streamline 

curvature, we nom consider the case of a two-dimensional channel along whose walls 
a periodic train of finite amplitude sinusoidal waves is propagated. The wall is assumed 
to be extensible and to undergo only transverse motion. That is to say, in the fixed 
reference frame the longitudinal velocity component at the wall vanishes. Comparison 
of the numerical solutions for flow under these boundary conditions with those shown 
in the previous section will indicate the effects of the (spatially variant) longitudinal 
wall velocity component upon the transport processes. 

In this section, three Reynolds numbers (pcd/,u = 2 .25 ,  23.1 and 251) were selected 
to denionstrate the inertial effects for a periodic peristaltic train of a given wave form. 
The nonlinear effects were further investigated for peristaltic pumping when an 
adverse pressure drop exists between two periodic sections (with the same pressure 
gradients), and for pumping by much more curvilinear peristaltic wall waves. 

7 . 1 .  The Reynolds number effects 

Profiles o f  the dimensionless longitudinal and lateral velocity components due to free 
pumping (2” = 0) a t  two different wave speeds are shown in figure 13. The solid curves 
are for 9 = 2.25 while the dashed ones are for 9 = 25.1. The former resemble those for 
a single-bolus flow a t  W = 2-5  (see figure 7) ,  although a small Couette effect due to the 
forward longitudinal velocity component of the inextensible wall is absent for the 
case of purely transverse wall motion. Because of the reduction in channel spacing 
(0.208h vs. 0.131h), the maximum longitudinal velocity (which occurs on the axis near 
the plane of longitudinal symmetry) is increased over that of the single bolus from 
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FIGURE 13. Effect of fluid inertia on the fixed-frame velocity profiles. Periodic elastic-wall 
wave; Alh = 0.164, dlh = 0.131, X = 0. -, 9 = 2-26; ---, 9 = 25.1. 

0 . 7 3 5 ~  to  0.93%. The rat,io of temporal mean discharge QR to  9 (at any section in the 
fixed co-ordinates) increases from 0.805 to  0.865. Because the dimensionless velocity 
components are in the form of a Reynolds number [refer to (1  l)], this temporal mean 
discharge can be expressed as 

Velocity profiles for periodic flow at 9 = 25.1 are depicted by the dotted lines in 
figure 13. With this ten-fold increase in Reynolds number, the longitudinal velocity 
component near the wall becomes even larger in the leading half of the bolus but smaller 
in the trailing half. As one moves inwards towards the axis, this trend is seen t o  
reverse. Similar phenomena were encountered by Jaffrin (1973) for small but finite 
Reynolds number and a vanishing ratio of wave amplitude to wavelength. The 
increase in Q, with the Reynolds number for finite amplitudes shows the opposite 
trend from the small wave amplitude ( A  < A )  peristalsis studied by many investigators 
(Jaffrin & Shapiro 1971). 

For 5%' = 25.1 the lateral velocity component, which at the lower Reynolds number 
was nearly antisymmetrical about the bolus midsection, is now augmented in the wall 
region. An opposite effect (inward shift in lateral velocity) occurs near the highly 
curved segments of the leading and trailing edges of the wall. A further consequence 
of this ten-fold increase in the inertial effects is the increasing asymmetry of the shear 
stress (refer to  figure 14) along the wall. The maximum wall shear stress is increased by 
a factor of 19, with the peak value occurring somewhat nearer to the leading edge. 

An additional ten-fold increase in the relative inertial effects (see figure 15) to 
9 = 251 shows a marked flattening of the longitudinal velocity profiles which is 
somewhat suggestive of that  observed for potential peristaltic flow (compare with 
figure 3). Although the maximum longitudinal velocity a t  9 = 251 falls to 0*701c, the 
pumping effectiveness is improved by another 10 yo (with a, now equal to 0.9559).  
The dimensionless shear rate a t  the wall increases even more rapidly, a t  some points 
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FIGURE 14. Tangential shear stress distribution along the wall for 
A / h  = 0.164, d / h  = 0.131, .'X? = 0. 

to  more than twice its value a t  B = 25.1, leading to  augmentation of the peak shear 
stress by an additional factor of 30. This would indicate that strong enhancement of the 
inertial effects a t  the wall by increasing the peristaltic wave speed may not be a 
desirable means of increasing the flow rate of stress-sensitive fluids such as blood 
because of the possible damage to blood elements. 

The effects of fluid inertia upon the pressures developed within a peristaltic bolus 
for the free-pumping end condition are depicted in figure 16. The maximum longi- 
tudinal pressure variations, observed to  occur along the wall, are plotted for four 
different Reynolds numbers. Owing to the large wall curvature, the pressure also varies 
across lateral sections. With a moderate increase of from 2.25 to 25.1, the large difference 
between the two wall pressure extrema a t  x*lh = 0.15 and 0.90 for the former case 
diminishes, although a vestige of the longitudinal asymmetry in the distribution can 
still be detected. For a further inertial increase to  9 = 251, the wall pressure distribu- 
tion tends monotonically towards that of the potential-flow case. The present resultas 
imply that for the same ambient pressure (outside the channel) the maximum magni- 
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FIGURE 15. Fixed-frame velocity profiles for the pumping pattern of figure 13, with 9 = 251. 
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FIGURE 16. The effect of fluid inertia on the pressure distribut,ion along the wall. Paraineter values 
f o r d  = 2.25, 25.1 and 251 correspond to the flows in figures 13 and 15. For a = CO, $bb - $bb = 8.0. 

tude of the dimensionless applied force of contraction anddilatationnecessary to propa- 
gate a prescribed peristaltic wave form will reduce as the Reynolds number increases. 
Furthermore, the trend towards a more symmetrical distribution of the wall pressure 
correlates with the decreasing viscous energy dissipation (which tends to zero as 
vanishes): a greater portion of the contractile work done by pressure (in the trailing 
half of the wall) is recoverable as dilatational pressure work done by the wall 
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FIGURE 17. (a )  Fixed-frame velocity profiles and (b )  pressure profiles for pumping against t i  mild 
adverse pressure gradient; A / h  = 0.164, d / h  = 0 . 1 3 1 . 9  = 2.25, X = - 39.25, periodic wall wave 
with elast,ic-w.all boundary conditions ( b ) .  

in the leading half of the wave. However, to propagate the same wave form a t  low 
Reynolds numbers (e.g. 2-25), it is necessary to supply additional energy from the 
contracting part of the wall to a portion of the dilating wall segment. 

7.2. The Karrncin number ejfects 

Velocity profiles for pumping against an adverse pressure gradient by peristalsis are 
shown in figure 17 for a KBrmBn number of - 39.25. The magnitude of this imposed 
KBrmBn number corresponds to a net pressure drop equal to the largest pressure 
differential observed within the bolus for the free-pumping case (see solid lines in 
figure 13). The wall shear and the longitudinal velocity component in most parts of the 
dilating bolus decrease, while large shearing stresses are developed a t  the neck segments 
because of the three-fold increase in retrograde velocity. These alterations, which are 
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caused by the adverse X ,  result in an increase in the lateral velocity; clearly, the 
' Poiseuille-flow component ' must diverge laterally and then converge to accommodate 
the spatially varying channel width. The effects of the adverse pressure differential on 
the pressure distribution can be seen by comparing the results shown in figure 17(b) 
with those in figure 4. A continuous increase in the adverse 3? would eventually lead 
to flow separation in the diverging section of the wave unless the intensity of peristalsis 
were augmented. It can be seen that, when the opposing effects of a pressure drop and 
peristaltic wall motion are of approximately equal magnitude, a situation which arises 
(for moderate channel spacings) when pumping against a relatively mild pressure 
gradient, the effectiveness of fluid transport by peristalsis is markedly reduced. In  the 
present example, the adverse pressure drop resulted in a 62 yo decrease in the temporal- 
mean discharge in the fixed frame, from 0.805 to 0.306. Comparable changes in the 
pumping effectiveness ensue when the effects of a pressure drop and wall peristalsis are 
complementary. 

7.3. The effects of large wall curvature 

Computational and experimental flow patterns viewed from the moving reference 
frame for a peristaltic flow in which the effects of large wall curvature dominate those 
of finite fluid inertia are shown in figure 18 (plate 1). The numerically obtained stream- 
lines (upper half) agree well with the experimentally visualized bubble path lines 
(lower half) in their delineation of the size and location of the secondary flow vortices. 
The path-line tracings, in which the ripples were caused by vibrations of the camera, 
reflect higher velocities near the wall. As was pointed out in the linearized analyses of 
Shapiro et al. (1969), Tong & Vawter (1972) and Jaffrin (1973), the occurrence of a 
moving-reference-frame stagnation point along the axis is indicative of a splitting of 
the streamline 'I? = 0 from the axis. The trapped fluid enclosed by this split streamline 
must then move forwards with a net advance velocity equal to the wave speed. 
Depending upon the pressure drop, an appreciable portion of the fluid within the bolus 
may be trapped even when the channel is not fully occluded. In this free-pumping case 
(.X = 0) ,  the relative trapping intensity, defined as the ratio of the maximum magni- 
tude of the stream function within the secondary vortices to that along the channel 
walls, is calculated to be 22.3 yo. The trend of decreasing trapping intensity reported by 
Jaffrin (1973) for a small increase in inertia at  a zero ratio of wave amplitude to wave- 
length is also noted in the present study for a large increase in inertia at  a finite 
amplitude ratio. In the limiting case of potential flow, the maximum backward 
velocity in the moving frame occurs along the bolus axis rather than a t  the wall, 
indicating that, at  very large Reynolds number or in the absence of viscous effects, 
trapping in the core is unlikely to occur unless the channel is almost fully occluded. 

As can be seen from the contour plot in figure 19 (a) ,  a large adverse pressure drop 
occurs across the highly constricted neck region of the bolus. For the free-pumping 
case, this pressure drop is balanced by a gradual increase in pressure from the leading 
edge to the trailing edge. The shearing stress peaks along the wall at  the bolus necks 
(figure 19 b); its distribution exhibits much greater longitudinal symmetry about the 
section x* = $A t'han was observed for a smaller wave amplitude at a comparable 9 
(refer to figure 19 b). Figure 19 (c) confirms the intuitive expectation that the secondary 
vortices characteristic of trapping have an insignificant energy dissipation rate com- 
pared with that observed along the axis on either side of the highly occluded region. 
The dynamic characteristics of this pair of trapping vortices are similar to those of 
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FIGURE 19. Contours of (5) pressure, (b)  shearing stress and 
(c) energy dissipation for the flow in figure 18. 

steady laminar vortices in a conduit expansion (Macagno & Hung 1967a, b ) ;  for 
both cases, the role of vortices is to guide the longitudinal flow through the channel 
transition without a large expenditure of energy within the vortices themselves. Unlike 
the boundary-layer separation, however, the peristalsis propels the captive vortices 
along the centre-line of the channel. 
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FIGUKE 8 .  Comparison of cornputatlonally obtained (upper) and experimentally 
observed (lower) flow fields. A/h  = 0.1 64, d / h  = 0.208, .X = 2.36, 9- = 0.  

FIGURE 18. Moving-frame streamlines (upper) and bubble path lines (lower) for the trapping 
condition. d / A  = 0.328, d / h  = 0.0983, W = 4 . 7 5 , s  = 0, periodic wavewith elastic-wall boundary 
condit,ions. 
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